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formulation is suggested for certain problems concerning 

the development of cracks in solid bodies under the action of intense 

pressure. As a model for the solid body an ideal liquid is considered; 

such a model has already found wide application in the hydrodynamic 

theory of hollow charges and explosion [1,21 and in the acoustic theory 

of spalling [31 where extremely high pressures also exist. The proposed 

simplification provides us with an effective method for solving a number 

of problems which in a more exact formulation are found to be intract- 

able. The solutions obtained may be of value in themselves within the 

context of ideal liquids. 

1. Hydrodynamic formulation of certain static problems of cracks in 

solid bodies. 1. Suppose that a solid body, initially at rest, is sub- 

jected to extremely large body and surface forces over a certain inter- 

val of time At. As a model of the solid body, let us consider an ideal 

liquid. This assumption is evidently justified for high pressures. In 

addition, let us assume that 

2’ < c, SA t << L (1.1, 

Here v is the characteristic velocity of particles of the body after 

the application of the large pressures and body forces, c is the velo- 

city of sound in the body and I. is a characteristic linear dimension. If 

conditions (1.1) are satisfied it can be shown [41 that for the particle 

velocity v after impact and the impulse pressures 

At 

P= \pdt (p is the pressure) 
0 

1649 
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there exist the fundamental relations 

v = grad 9, acp = 0, q) = u + p-V, F = grad U 

Here F are the impulse body forces, U is the potential and A 
Laplace operator. 

(1.2) 

Is the 

2. In L2.51, which deal with explosion theory, it is assumed that 
the surfaces formed after the explosion are very smooth, Although such 

an assumption would be quite justified in the case of noncohesive or 

slightly cohesive soils such as sand, it is hardly justified for brittle 

bodies (such as rock masses), since the surfaces formed after an ex- 

plosion in such bodies are uneven, with cracks branching off into the 

body. It is therefore of Interest to construct a solution still on the 

basis of the model of an ideal liquid for impact problems in a liquid 

with cracks. 

Suppose that the following condition Is satisfied: 

VAt>l (1.3) 

Here V is the velocity of crack propagation and 1 is the length of 

the crack formed after the explosion. Condition (1.3) means that the 

duration of unsteady crack propagation is small compared with the dura- 

tion of the action of the intense pressures. Note that the maximum velo- 

city of crack propagation is of the order of the velocity of sound L6.71, 

and since vAt << 2, equations (1.1) and (1.3) will not be inconsistent. 

If condition (1.3) is satisfied, we can evidently assume that the 

crack develops instantaneously and that the impulse of the cohesive 

forces during the period of crack propagation is negligibly small com- 

pared with their Impulse during the time when the crack is stationary. 

In connection with the latter cohesive forces, we shall adopt the two 

hypotheses of Barenblatt, namely that the end region of the crack in 

which the cohesive forces act is small and autonomous [Al. Then the in- 

tensity of the cohesive forces will evidently be the same as the in- 

tensity of the cohesive forces in a static crack. 

Making use of the condition of finiteness of the impulse pressure at 

the tip of the crack, which is analogous to Khristianovich’ s condition 

in the theory of cracks, it is not difficult to obtain the analogy of 
c -I 

Barenblatt’s condition 171 : the impulse pressure in the region of the 

tip of the crack has a singularity of the type 

KAt 
p= 7 

2x1 s 
(1.4) 

where K is the static modulus of cohesion and s is the small distance 
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from the tip of the crack on its extension. Condition (1.4) may be used 

to determine the previously unknown length of the crack. 

Note that when the impulse of the cohesive forces is negligibly small 

compartd with the other forces which resist the development of the crack, 

one condition of finiteness is sufficient for the determination of the 

crack length. 

Conditions (1.1) are the conditions of statics for a solid body. The 

displacement u and the pressure p within the body can easily be found 

from the solution to the problem in its present simple formulation if it 

is assumed that the pressures acting on the body are independent of time 

during the interval At, and that the velocity v increases l.inearly with 

time during this same interval At. Then 

P=pAt, u = ‘Ia VA t (1.5) 

and since the problem is linear, the factor At cancels in the final 

formulas. It should be pointed out that we can, of course, solve only 

those problems in which on the bounding surfaces the normal stresses or 

normal displacements are given and the tangential stresses are zero. 

2. Specific problems. We shall now consider some problems of cracks 

in solid bodies in the proposed simplified formulation. We shall confine 

our attention to plane problems, for which the fundamental relations 

(1.2) may be conveniently written in the form 

P = P Re f (4, v = vx $ iv, = f’ (2.1) 

where f’(z) is an analytic function of z = I + iy; vw and v 
Y 

are compo- 

nents of velocity along the axes of Cartesian coordinates x and y. Here 

it is assumed that impulse body forces are absent (F = 0). 

1. Simple problems. Consider an infinite body with a cavity of arbi- 

trary shape but of finite dimensions with its surface free from loading. 

Suppose that an impulse pressure P = P, acts at infinity, as a result of 

which cracks are propagated from the surface of the body, the cracks 

also being free from loading. We assume that the crack configuration is 

known. 

It can be shown that in the case when there are one or two cracks 

the solutions may be written, respectively, in the form 

f (2) = pf If g (4 + L 
g (4 - J5 ’ 

p,g (4 
f (z) = ~-- 

P ‘t/g” (2) - L2 
(2.2) 

Here g(z) is a function which effects the conformal transformation 



1652 G.P. Cherepanou 

of the exterior of the contour in the physical plane of I into the ex- 
terior of the interval ( -L, +L) with correspondence of points at in- 

finity and the ends of sections. It is also not difficult to obtain a 
solution in general form for any number of cracks which reach the bound- 

ary of the body. 

As an example, consider the case when the cavity is a circle of 
radius R with two identical cracks of length 1 along the x-axis. In this 
case the transformation function g(z) may be written in the form 

L= +(sg+$) (2.3) 

and condition (1.4), which determines the length of the crack 1, can be 
reduced to the form 

KAt 

nP, I/ii = 
(h+1)0.*+2A+22) ( 

25 (2 + N 
l=f (2.4) 

The problem of crack interaction is also of interest. The solution 
for problems with a one-row lattice of cracks, as well as the correspond- 
ing results, coincide to the accuracy of a constant multiplier with 

those obtained in 18. Be&ion 31. These results will not be repeated 
here. In a manner analogous to that of [aI we can also study the question 
of the development of curvilinear cracks. 

2. Explosion in a cylindrical cavity. Suppose that an explosion of 

Intensity P, occurs In a cylindrical cavity of radius R, and that as a 
result 2n aymmetrlcal cracks of the same length I are formed in the body 
radiating from the boundary of the cavity. At infinity there will be a 
peak pressure q, so that the corresponding compressive impulse pressure 

at infinity IS qAt. 

The boundary conditions of the problem can be written in the form 

P = 0 for col z = knln (k = 0, 1, . . .) 2n; lzl<Z+R) 

P = P, for 12 I= R 

P = qAt + o(i) as 2’00 (2.5) 

We rewrite conditions (2.5) in the form of a boundary-value problem 

for determining the function f(s) 

Ref (2.) = 0 for -1 z = h/n (k = 0, 1, . . .( 2n; Iz I < 1-F R) 

Re f (z) = P, / p for Izl=R 

f (z) = qAt / P + o (1) as z-b= 

The solution to (2.6) Is of the form 191 

(2.6) 
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_I*(1P5)[~(52--z)(l--2)ir52-L2C5(l-5)1 

(1 - 5) [- d(r;o - L2) (1 -IX-- (F-LY f 5 (I+ a1 ) 
qAt6 I 

P V/52-L% 

L = +- [(I + k)“+ (1 ++)-n] 

(2.71 

1/P--2=5 +0(:-l) *s c-+rn 

We now consider two of the more important particular cases of the 
general problem. Suppose first of all that K/g4 (I << 1). so that the 
cohesive forces at the tip of the crack are small compared with the 
forces from the peak pressure. Then the potential f(z) is given by 

- 
p, In 

I(4 = - npi 
(1 + 5) I vu - w (C2 - -m + c2 - L2 + 6 (1 - 5) 1 

(1 - 5) IV/(1 - L2) K2 - L2) - K2 - -w + c (1 + 91 (2.8) 

The crack length 1 can be found from the condition of finiteness of 
impulse pressure at the tip of the crack, which can be reduced to the 

form 

When P, >> qAt. condition (2.9) assumes 

1 / 2Po \r.:n 

,icqAt ‘;” 

PO i -1 (2.9) 

the form 

R=\Tqi) -I (2.10) 

Suppose now that K/q4 ( 1” 1). so that the cohesive forces at the 
tip of the crack are large compared with the peak pressure. Then, in 
expression (2.7) for f(z), we can set q = 0 and determine the crack 
length 1 from condition (1.4). which in this case can be reduced to the 
form 

PO 1/R 
-KG--= i 

n [(I f 1 /R)” - (1 + 1 /R)-” 

L (1 + 1 /R) 

(2.11) 

I’2 [ tan_l +/-z _ ran-’ 1/LIJ’ 

Expressions (2.11) and (2.7) may be used to find the crack length 1. 
When Pod R/KAt >> 1, i.e. when the impulse forces are large compared 
with the cohesive forces acting in the end region of the crack, so that 
1 >> R, formulas (2.11) and (2.7) can be reduced to the very much 
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simplified form 

P$R n 1 %-I __~____ _- 
( i K”(At)s - 2 R (2.12) 

Formulas (2.9) to (2.12) show that the crack length depends very 

much on the number of cracks 2n, which in general is unknown. In order 

to find this number a further physical condition is required. It is 

apparent from physical considerations that in the first place n depends 

on the magnitude of the impulse PO and on the properties of the material. 

3. An acoustic approximation to 
acoustic problems on the motion of 

the fundamental relations [4! 

some dynamic problems of cracks. For 

an ideal compressible liquid we have 

grad cp, 
av 

P= - P ai 

Here 0 is the potential of the perturbed motion which is character- 

ized by velocity v and pressure p. 

We shall consider two plane problems which illustrate the possibility 

of using the acoustic model for solving certain dynamic problems in the 

theory of cracks. 

1. Steady crack propagation. Suppose that a thin, absolutely rigid 

semi-infinite wedge moves at a constant velocity V along its axis of 

symmetry in an infinite body. For simplicity, we shall assume that the 

thickness of the wedge 2h is constant. We assume that the material of 

the body is an ideal compressible liquid, and that the wedge is preceded 

by a crack, the length I of which we require to find. Within the frame- 

work of an ideal compressible liquid, the cavity formed by the crack 

may be looked upon as a stagnant zone. We take the x-axis as the axis 

of symmetry of the wedge with the positive direction in the opposite 

direction to the motion of the wedge. 

Since the thickness of the wedge is assumed to be small the boundary 

conditions may be specified on the x-axis as follows: 

7’ = 0 
;= 0 

for .r < Vt, s > Vt + 1 
for 1’1 < Cr (I-t + 1 

(3.X: 

With the aid of fundamental relations (3.1) for the perturbed velocity 

and pressure in the steady motion of the liquid we obtain the expressions 

p = pv Re @’ (z), ~3.~ z He W (z), uy = - 1/1 -3 Im a,’ (2) 

Z = Z - L’t + I 61 - &, m = v / c (me<) (3.3) 

Here O(L) is an analytic function. Making use of (3.3), we can write 

the boundary conditions (3.2) for Im z = 0 in the form 
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Im W (2) = 0 for Re z<O, Rek>I (3.4) 

Re CD’ (2) = 0 fnr 0 < Re 2 < 1 

The solution to boundary-value problem (3,4) is of the form [91 

@’ (2) = 
V/z (:- 1) ’ 

l/z (2 - 1) = z f 0 (2-l) as z + 00 (3.5j 

We determine the real constant C from the obvious condition 

; 

\ aUdx = hV 
. 
* 

(3.6) 

and obtain 

c=,jfk (3.7) 

.- . 
The crack length 1 can be found from the condition obtained in LSJ 

pzc4h2m4 
’ = K2 (1 - mZ) (Kis the cohesion modulus) 

The present problem is analogous to the problem of the wedging of 

brittle bodies [61. However, the result obtained (3.8) does not agree 

even qualitatively with the corresponding result in the wedging of 

brittle bodies [61. This shows that the analogous and simplified formu- 

lation of these problems must be approached with extreme caution. How- 

ever, (3.8) does provide a reasonable result for an ideal elastic liquid 

if the crack is looked upon as a stagnant zone. 

2. Nonsteady propagation of cracks. Consider an infinite elastic 

ideal liquid subjected to a constant negative pressure p = - p,,. Suppose 

that at the initial instant in time a cavity, which we can represent 

ideally as a cut along the real axis ( - Vt, Vt), where V ‘< c, is 

initiated at the origin of coordinates and develops along the x-axis at 

a constant velocity V. The cavity is free from pressure. This problem is 

analogous to Broberg’s problem for elastic bodies [lo;. 

The pressure p satisfies the wave equation 

a2P c2 np = 12 (3.9) 

for which we solve the following boundary-value problem: 

P = PO at y = 0, 1 z I <Vt, p=o at. t=O (3.10) 

By superposing a constant pressure - p,, on the solution to this 
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problem we evidently obtain a solution to the initial problem. 

The solution to boundary-value problem (3.9) and (3.10) belongs to 

2 rn’ 
--- 

i 

z= 
zt - iy v/t2 - c-2 (9 -+ y2) 

x2 4- y” 

where o(z) is an analytic func- 

tion. 

In the plane of the complex variable z we obtain the following bound- 

the class of functional-invari- 

ant solutions of Smirnov- 

Sobolev cl11 

p = Re CD (z) (3.11) 

ary-value problem to determine the function Q(Z): 

Re 0 (z) = p. for Im z = 0, 1 Rc 2 I> 1 /V 

Re @ (z) = 0 for Im z = 0, 1 Re z 1 < 1 / c (3.12) 

After the integrals have been evaluated, the solution to boundary- 

value problem (3.12) can be reduced to the form 

where K and I’! are total elliptic integrals of the first and third kinds. 

The function J(z2 - C2) /J(z2 - V-*) is positive on the upper boundary of 

the cut (- c-l, c-l). 

In order to determine the rate of widening of the cavity we make use 

of the condition obtained in [121. We find that 

p. I/c- 
‘* = -H- = 1/2 I/m (1 !- ,n2) K (nq 

where R is the dynamic cohesion modulus [121. 

A qualitative representation of expression (3.14) is provided by the 

diagram in an analogous way to that for the corresponding relation in 

the elastic problem given in [121. The problem we have studied here 

would evidently be of value on its own in the study of cavitation in a 

liquid under the action of negative pressures. 
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